EVALUATION OF HIGH INTENSITY SHEETING FOR OVERHEAD HIGHWAY SIGNS

Ъу

R. N. Robertson Research Engineer

(The opinions, findings, and conclusions expressed in this report are those of the author and not necessarily those of the sponsoring agencies.)

Virginia Highway & Transportation Research Council (A Cooperative Organization Sponsored Jointly by the Virginia Department of Highways & Transportation and the University of Virginia)

In Cooperation with the U. S. Department of Transportation Federal Highway Administration

Charlottesville, Virginia

December 1974 VHTRC 75-R24

SUMMARY

The current practice in Virginia is to reflectorize and illuminate all overhead highway signs because of their important role in the safe and orderly flow of traffic. Reflectorization is obtained by using reflective sheeting as background and legend materials, and diffuse illumination is provided on the sign surface by lighting fixtures. The performance of the high intensity sheeting has shown significant promise and the purpose of this research was to determine the feasibility of using the material on overhead highway signs without external illumination.

Since sign brightness standards have not been established, a comparative technique was employed whereby the brightness of six high intensity overhead signs without illumination was compared to that of six conventional illuminated signs. All experimentation was conducted in the field under the physical and environmental conditions experienced by the highway user. Luminance measurements were made with a telephotometer at the driver's eye position of eleven conventional automobiles. A total of 5,446 luminance measurements were recorded from the travel lanes of illuminated and non-illuminated roadways.

The study concluded that the unlighted high intensity signs were brighter than the lighted conventional signs for the motorist traveling on straight sections of roadways using high beam headlights. For the same motorist using low beams the luminances of the high intensity signs were not as bright as those of adjacent conventional signs. Under stream traffic conditions, the average luminances of the conventional signs were slightly higher than those of the unlighted high intensity signs, however, in many cases there were no statistical differences and the people who viewed the signs stated they preferred the high intensity sign because its uniform brightness provided better legibility.

On a curved approach, where only a limited amount of light from the vehicles was projected upon the overhead signs, the brightness of the unlighted high intensity signs was not sufficient to provide the motorists with sign visibility and legibility equivalent to those obtained from the lighted conventional signs.

EVALUATION OF HIGH INTENSITY SHEETING FOR OVERHEAD HIGHWAY SIGNS

Ъy

R. N. Robertson Research Engineer

INTRODUCTION

Interstate highways and similar freeways have necessitated the use of many overhead signs. The traffic operational requirements on the Shirley Highway in Northern Virginia were such that all guide signs had to be installed overhead. The overhead sign, like any other, must be visible and legible to the motoring public and the <u>Manual on Uniform Traffic Control Devices</u> states that "all overhead sign installations should be illuminated where an engineering study shows that reflectorization will not perform effectively."⁽¹⁾ The reflectivity of the materials used in the past was not sufficient to fulfill this requirement, therefore, a light source was required to make the signs effective at night.

The current practice in Virginia is to reflectorize and illuminate all overhead signs. Reflectorization is obtained by using enclosed lens reflective sheeting as background and legend materials and diffuse illumination is provided on the sign surface by lighting fixtures. Many of the lighting fixtures are fluorescent, however, the newer overhead sign installations are equipped with mercury vapor fixtures.

Although overhead signs play a significant role in the safe and orderly flow of traffic, they do create problems for traffic engineers and maintenance personnel. The external illumination is one of these problems.

Cost is always an important factor and the expense of the initial light installation is compounded by the great distances to the power sources and unfavorable working conditions on the heavily traveled highways. The maintenance of the lighting has proven to be a regular and continuing process which requires periodic night inspections to locate malfunctioning lights.

Associated with the malfunctioning illumination is the loss of sign service to the motoring public. Overhead signs are usually installed at complex locations on the highway and are most important during the hours of darkness when the driver is unable to see the approaching highway configurations. Several studies have shown that the brightness of conventional signs reduces drastically when the lighting is eliminated, and the level of visibility on the conventional unlighted sign is not sufficient for the average driver. (2,3,4)

The repairs of overhead sign lighting require that equipment and workmen be on the roadway, therefore, a lane must be closed during these operations. Traffic volumes on many freeways, especially in the urban areas, are such that a lane cannot be taken out of service except for a few hours during the off-peak period. Even then, much inconvenience is created for the motoring public, and the exposure of the workmen to traffic is extremely hazardous.

PURPOSE AND SCOPE

Studies have concluded that the brightness of encapsulated lens (high intensity) sheeting is superior to that of the enclosed lens sheeting presently used as faces on overhead traffic signs. (2,3,4,5) The performance of the high intensity sheeting shows significant promise and the purpose of this research was to determine the feasibility of using the material on overhead highway signs without illumination. Since sign brightness standards have not been established, a comparative technique was employed whereby the brightness of high intensity overhead signs without illumination was compared to that of the conventional illuminated signs.

All experimentation was conducted in the field under physical and environmental conditions experienced by the highway user. Luminance measurements were made of the legend and background materials with a telephotometer at the driver's eye position in a variety of conventional automobiles. All measurements were taken from the travel lanes. The major portion of the evaluation was performed on signs installed on non-illuminated freeways; however, several experiments were conducted on signs with ambient lighting because of the trend to illuminate highways, especially in urban areas.

Human factors were incorporated into the study by requesting individuals such as police officers, engineers and highway users to make visual comparisons of the visibility and legibility of the signs.

Luminance measurements were made with a Gamma Scientific, Inc., Model 2009K telephotometer. This instrument was suited for the study as it measures the amount of reflected light from the sign surface. At the outset and at the termination of the tests the instrument was calibrated and over a number of tests it averaged ± 2.0 percent.

Although five acceptance angles were available with the instrument, the 2 minutes of angle sensing probe was chosen as it approaches closely the 20/40 acuity eyesight required for licensing of drivers in Virginia. Further, the generally accepted 50-foot per inch (38.71 m/cm) of letter height criterion⁽⁶⁾ for letter legibility and the interstate letter stroke width of 1/5 the letter height yields a stroke width at legibility thresholds for the acuity standards allowed of approximately 2 minutes width.⁽⁷⁾ Thus the acceptance angle of the instrument approximates the letter stroke width at the useful legibility distances.

As shown in Figure 1, the instrument was mounted on a tripod above the driver seat back at the driver eye position. In normal use, two operators were required: one to align the optical head with the object in the field of view, the other to record the result.

STUDY SITES

Because of the comparative technique employed in the study, sites were selected where two or more signs were installed on the same overhead structure. At each site, an existing sign was refurbished with enclosed lens sheeting (background and legend) and the adjacent sign was refurbished with high intensity sheeting. The overlay method of sign refurbishment was utilized.

Recording distances were established at each site and marks were applied on the roadway surface on the sign approach at 300-foot (91.44 m) intervals up to a maximum distance of 1,500 feet (457.20 m), as shown in Figure 2. It was felt that these distances encompassed the range of interest accorded detection, identification, and legibility factors.

Six locations representing a variety of geometric configurations of the freeway system were chosen and the design details of the individual sites are related in the following sections.

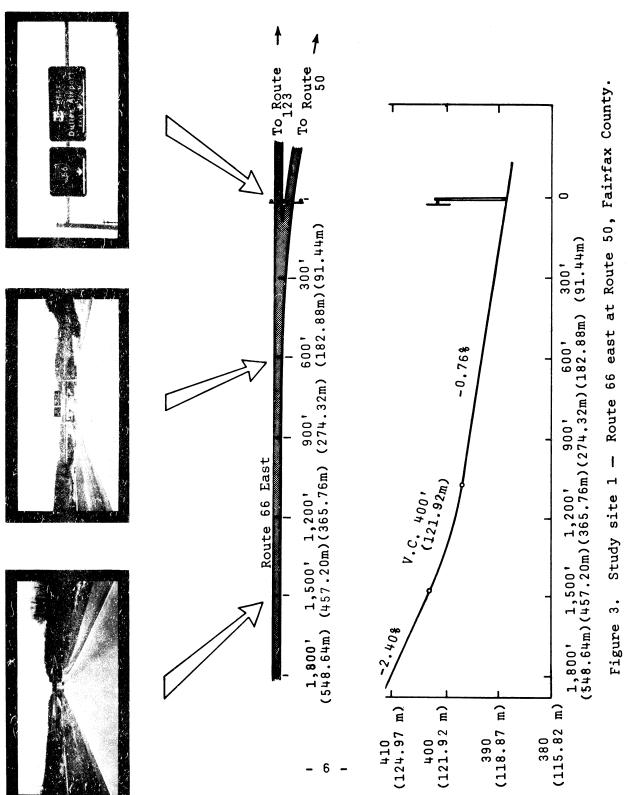
Figure 1. Telephotometer used to measure sign luminances.

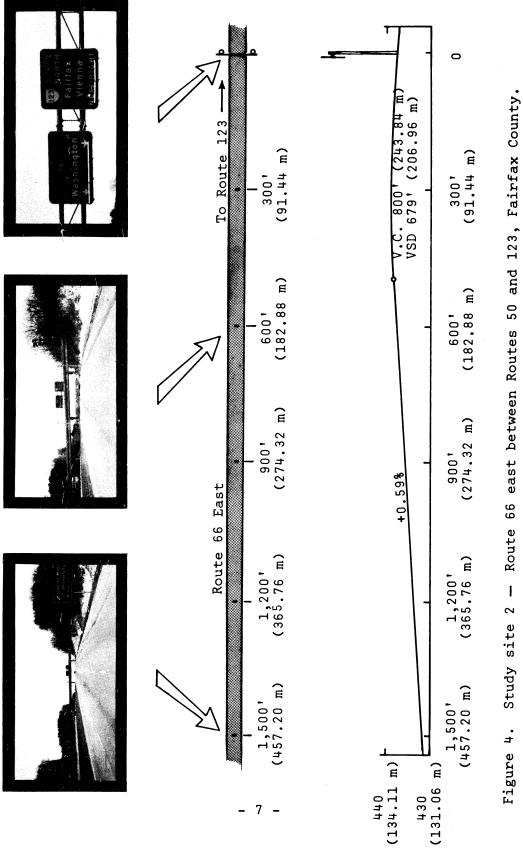
Figure 2. Marking recording distances.

Site 1

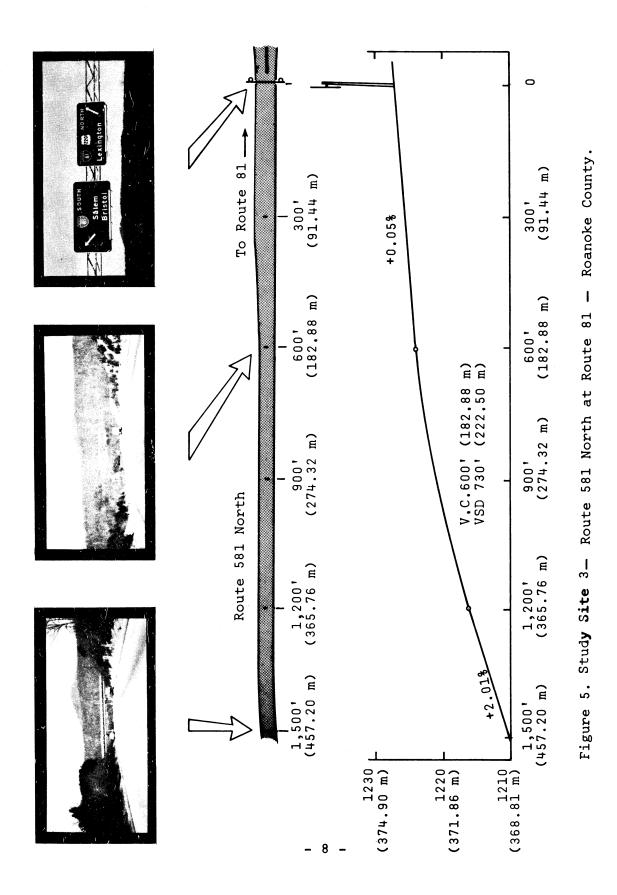
The first site selected for study was the overhead signs located over the eastbound lanes of Route 66 at the exit to Route 50 in Fairfax County. As shown in Figure 3 the approach to the signs was straight and downgrade. There were two eastbound lanes on Route 66 at this location and the high intensity sign and the conventional sign were placed over the left and right lanes, respectively. There was no ambient lighting, however fluorescent fixtures provided illumination on the conventional sign.

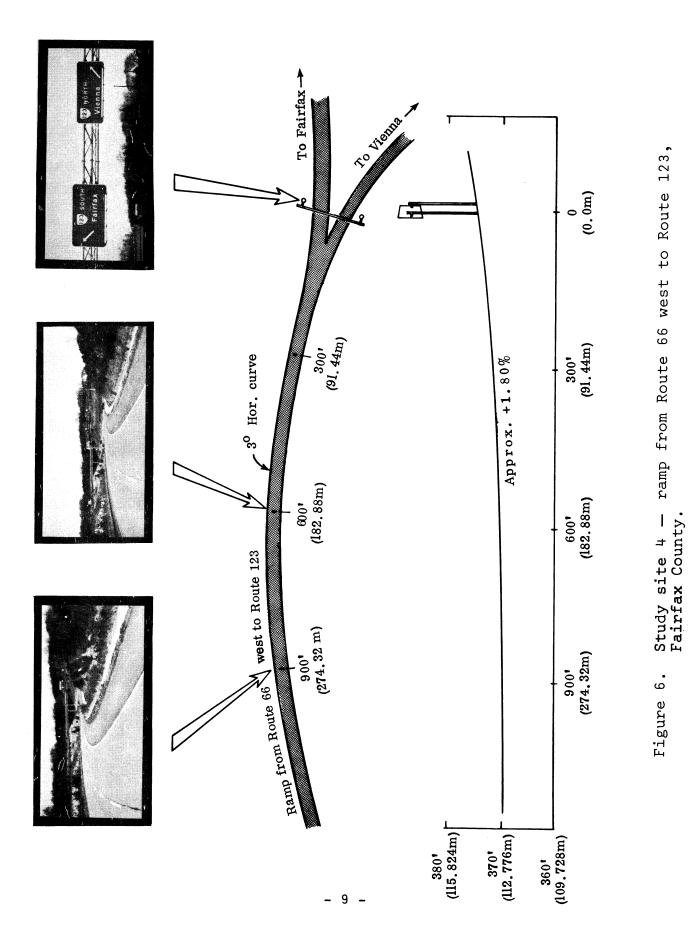
Site 2


Site 2 was selected because the signs were placed near the crest of a vertical curve on the eastbound lanes of Route 66 near the Route 123 interchange in Fairfax County. The approach was straight on the three-lane section of roadway as shown in Figure 4. The non-illuminated high intensity sign was erected on the right while the conventional sign was placed over the center and left lanes. Illumination was provided on the conventional sign by fluorescent fixtures and there was no ambient lighting.


Site 3

Site 3, located on the northbound lanes of Route 581 at the Route 81 interchange in Roanoke County, was similar to site 2, however the approach grade was steeper. Figure 5 shows that the visibility of the overhead signs was partially restricted by an overpass bridge when it came into the motorist's view. The conventional sign, located over the right lane, was illuminated by fluorescent lights.


Site 4


In order to determine the effects of horizontal alignment on the brightness of overhead signs a site was chosen on the exit ramp from the westbound lanes of Route 66 to Route 123 in Fairfax County as shown in Figure 6. This two-lane facility included a 3[°] curve, which is the desirable maximum curvature for most interstate and arterial highways in Virginia. The ramp had a posted maximum safe speed limit of 45 miles per hour (2.012 m/s) and sign visibility was restricted to approximately 900 feet (274.32 m) due to geometry and topography. The conventional sign, erected on the right, had fluorescent illumination and no other lighting was present in the vicinity of the signs.

Site 5

As shown in Figure 7 the approach to the overhead signs at site 5 is on a 2° horizontal curve. The maximum visibility of these signs, erected on Route 581 near Route 81 in Roanoke County, was approximately 900 feet (274.32 m) for the left lane and 750 feet (228.60 m) for the right lane, where in the latter case, signs were mounted on the shoulder and visibility was limited by the roadway geometry. As at the previous sites, the conventional sign (on the left) was illuminated with fluorescent fixtures.

Site 6

Site 6, on Route 95 near the Seminary Road interchange in the city of Alexandria, was chosen because it was provided with roadway lighting. The signs in this area did not need refurbishing, therefore special signs were fabricated and erected for the study as shown in Figure 8. The sign on the left (erected on the existing sign) was fabricated with conventional material and additional illumination was provided by mercury vapor fixtures. The high intensity sign, placed on the right, had no illumination except the roadway lighting.

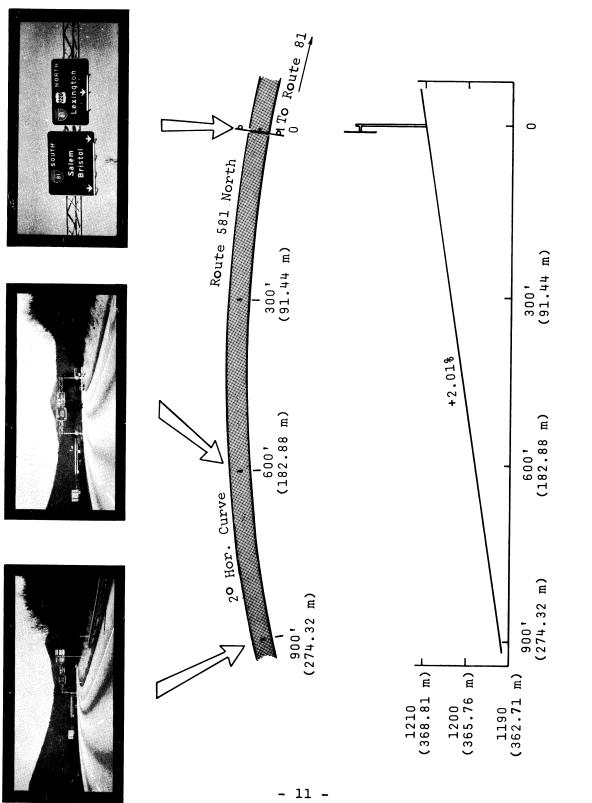
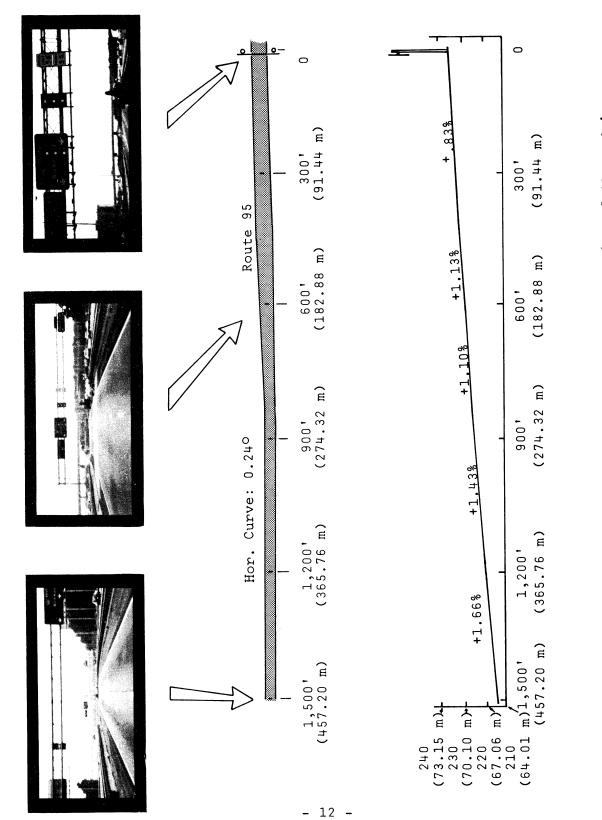



Figure 7. Study site 5 - Route 581 north at Route 81, Roanoke County.

Route 95 near Seminary Road, City of Alexandria. I Study site 6 Figure 8.

TEST VEHICLES

The automobiles used for data collection were domestic passenger cars or station wagons as noted in Table 1. The eleven vehicles used had tinted windshields. The vehicles were equipped with the photometric instruments and needed accessories. The fuel tanks were filled and the vehicles taken to an official inspection station for a check of the headlamp alignment. The intent was to procure an automobile representative of the latemodel car population that had headlamp adjustment in conformance with state requirements. Prior to the readings, all windshield and headlamp surfaces were cleaned.

In commencing the luminance measurements, care was taken to align the vehicles in the travel lanes with the lane line pavement markings. This was accomplished by traveling several hundred feet in approaching the recording position and stopping without last-second steering wheel alignment.

Table 1

Year	Make and Model	No. of Headlights	No. of Vehicles	Site	Tinted Windshield
1970	Plymouth; 4-door sedar	n 4	1	1,2,4,6	Yes
1974	Vega; 2-door coupe	2	3	1,2,3,4,5	Yes
1974	Mercury; 4-door sedan	4	1	4,6	Yes
1970	Ford Station Wagon	1ţ	2	1,3,5	Yes
1971	Plymouth; 4-door sedar	n 4	1	3,5	Yes
1972	Ambassador; 4-door sed	lan 4	2	1,2,3,5	Yes
1973	Plymouth; 4-door sedar	n 4	1	2,4	Yes
	ТОЈ	FAL VEHICLES	5 11		

Vehicles Used in Study

DATA RECORDED

At sites 1 through 5, the instrument was used to measure sign luminances as shown in Figure 9. Background measurements were

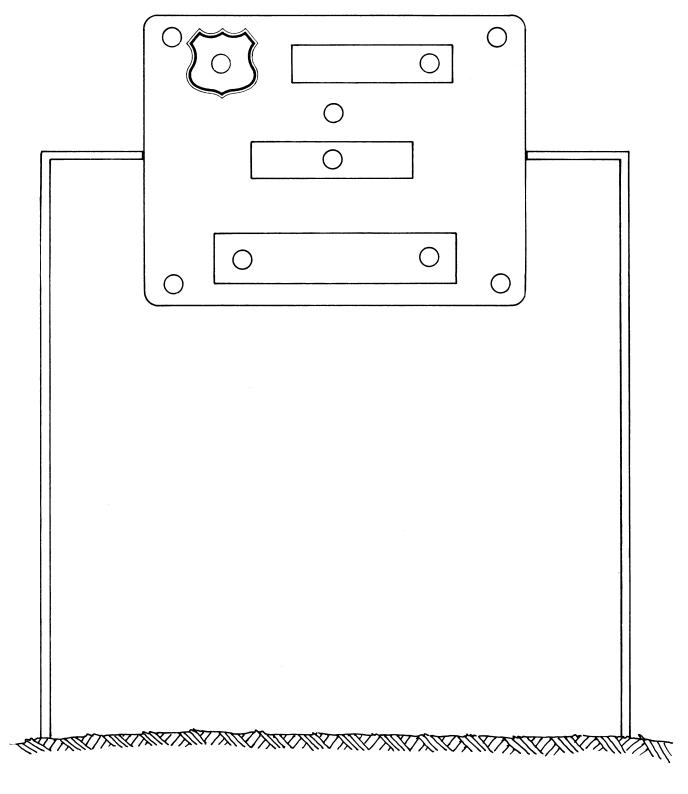


Figure 9. Brightness measurement locations.

taken in available spaces of the sign at the center and four corners at 300-foot (91.44 m) intervals up to a maximum distance of 1,500 feet (457.20 m). The sign legend luminance measurements were limited to distances of 300, 600 and 900 feet (91.44, 182.88, and 274.32 m) because of the 2-minute probe used on the telephotometer. At greater distances the letter strokes were not of ample size to allow measurements. Whenever possible the legend readings were secured as shown in Figure 9, but for some signs, complete data could not be gathered due to message placement. Measurements for these signs were taken at the top,center and bottom to obtain average luminances of the legend materials.

Readings were taken from the left and right lanes of the roadway using low and high beam headlights. Also, in an attempt to determine the effects of stream traffic, measurements were taken when other vehicles were adjacent to the observation vehicle. All vehicles in the traffic stream as well as the observation vehicle used low-beam headlights.

At site 6, the average luminances of the special signs were obtained by taking readings of the background and legend materials at the top, center, and bottom. Data were secured from vehicles in the right lane of the roadway as shown in Figure 8, under high beams, low beams, and stream traffic conditions. Another complete set of data was recorded from vehicles which approached the signs on a straight course. This was done by placing the centerline of the approaching vehicles perpendicular to the sign faces at 1,500 feet (457.20 m), the reticle of the optical head being aligned on a reference target and locked into place. Thereafter, the vehicle was moved and stopped at the next reading listances by alignment of the vehicle while the reticle was sighted on the target.

In all cases the probe was held to the area intended and particular care was taken with the legend readings to measure that portion of the sign face exclusively. For the 12 signs under study, 5,446 readings were recorded under various weather conditions. Inclement weather affects the luminance of many sign materials, and at each site an attempt was made to secure readings during one evening while dew formations were present. Measurements could not be made during rainfall, but they were taken under icy conditions at sites 3 and 5.

The roadway illumination in the vicinity of the signs was measured by a mobile illumination recording system developed by the Research Council.(8)

In addition to the luminance readings, facts were recorded at all sites including information on materials utilized for legend and background, sky cover, ambient lighting, presence of external illumination, position of sign, sign dimensions, vehicle description, and position of vehicle. A detailed description of each sign is given in Appendix A. At each site, a group of people were requested to view the signs and express their opinions on the effectiveness of each sign. Individuals such as engineers, clerks, secretaries, policemen, and general highway users were included in these groups. Because of the hazards involved in stopping on the traveled lanes, these observations were made from a parked vehicle on the right shoulder. On each visit the signs were first viewed at 1,200 feet (365.76 m), or at the maximum visibility distance, under the various lighting conditions. At this location the panel members were asked questions relative to "attention" or "target value." The individuals responded to questions such as, "Which sign did you observe first?" "What sign characteristic attracted your attention?" and "Do you feel that both signs have sufficient brightness to gain the attention of the motoring public at this distance?"

After the group's comments were recorded, the vehicle was moved forward and stopped at 600 feet (182.88 m). Questions were asked relative to legibility and degree and uniformity of brightness. Upon leaving the site each individual was requested to express a preference between the two traffic signs.

ANALYSIS

To adequately serve the motoring public, a sign must be visible and legible, and the approach distances at which the signs are visible and legible were of importance in this analysis.

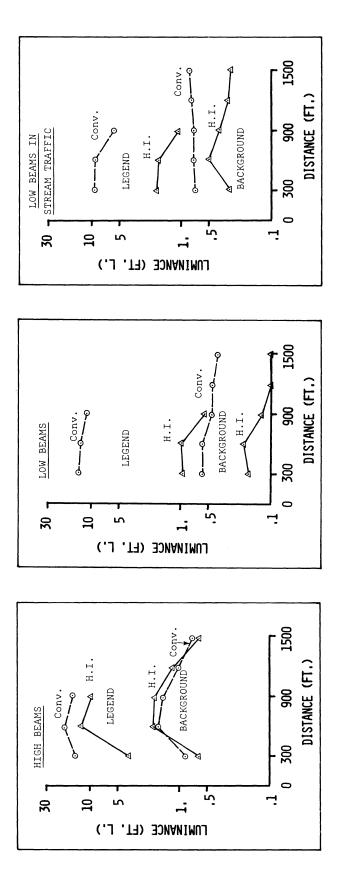
It is generally accepted that the legibility distance is 50 feet per inch (38.71 m/cm) of letter height.⁽⁶⁾ A review of Appendix A reveals that the letters on the signs under study had a height of 12 and 16 inches (30.48 and 40.64 cm); therefore, the signs were legible in the 600- to 800-foot range (182.88 -243.84 m). A study has shown that the visibility distance is a function of the sign dimension, the brightness contrast of the letters to the sign, and the contrast of the sign to the background terrain.⁽⁹⁾ Considering the size of the sign letters and the brightness values of the sign materials and surrounding terrain, the visibility recognition distance for the signs erected on non-illuminated roadways (sites 1-5) was in the 1,100- to 1,200-foot (335.28 - 365.76 m) range. At site 6 the visibility distance of the signs on the illuminated roadway was in the 800to 1,000-foot (243.84 - 304.8 m) range.

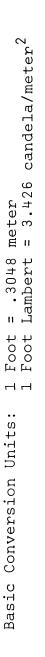
Since the brightness, or luminance, of a sign placed on the highway is a function of the characteristics of the sign material; the trigonometric relationship between the car, the sign, and the roadway; and the illumination reaching the sign from the headlights, it is necessary to discuss each site separately as the roadway geometrics vary.

A review of the data has been conducted and is presented in this section. The data, including the number of readings, computed averages, standard deviations, statistical test values and statistical significance at 95% confidence limits, are given in Appendix B.

The luminance readings recorded while dew was on the signs did not reveal any adverse effects on the brightness of the signs; therefore these will not be discussed for each site.

Site 1


Figure 10 shows the measured average luminances of the background and legend materials of the two signs under high beams, low beams, and stream traffic conditions. For high beam headlights, the average luminance of the unlighted high intensity background material was brighter than that for the conventional material at 600, 900 and 1,200 feet (182.88, 274.32, and 365.76 m). A review of the statistical analysis revealed that while the luminance of the high intensity background at 300 feet (91.44 m) was below that of the conventional material, there was no statistical difference between the two. Although the average brightness of the conventional legend material was greater than that for the high intensity legend, the difference was not statistically significant within the legibility distance.


For a motorist traveling alone on the highway and using low beams, the average luminance of the lighted conventional material was greater than that for the unlighted high intensity material.

Under stream traffic conditions, the average luminances of the conventional materials were slightly higher than those for the high intensity materials; however the differences were not statistically significant within the visibility and legibility distances. As shown by the standard deviations, the brightness of the high intensity sign was much more uniform than that of the lighted conventional sign.

- 17 -

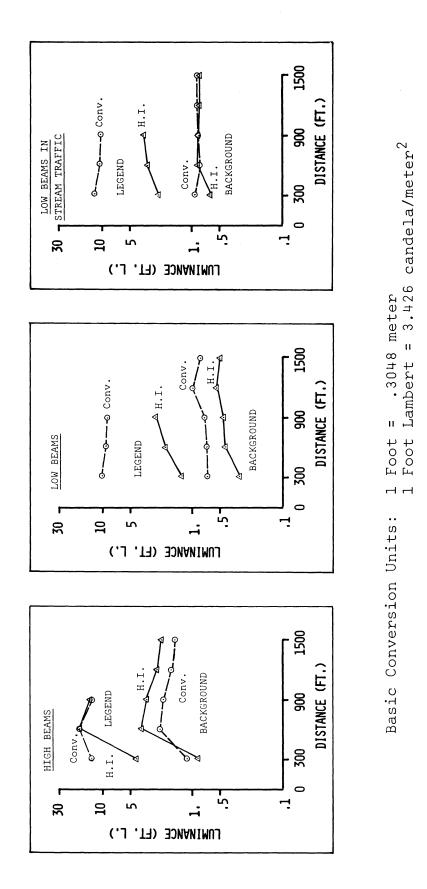
Site 1 - Nighttime average luminance versus distance. Figure 10.

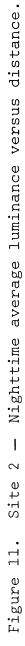
- 18 -

The majority of the eleven people viewing these signs stated that they first observed the conventional sign because of the bright spot created by the exterior lighting. However, they unanimously agreed that at 600 feet (182.88 m) the luminance appeared greater and more uniform for the high intensity sign and stated it was more legible than the conventional sign. Upon leaving the site, each stated he would prefer the high intensity sign.

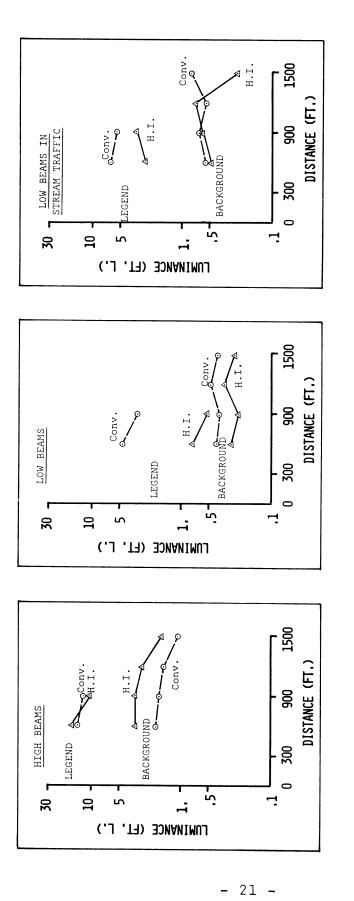
Site 2

Due to the roadway geometrics at site 2, more illumination from the headlights could reach the signs than at site 1 and, as expected, the average luminance readings of the signs were greater. Figure 11 shows that with high beams the high intensity material was brighter than the conventional material except at 300 feet (91.44 m), where the white legend material was significantly brighter.


With low beams, the lighted conventional sign was much brighter than the unlighted high intensity sign as insufficient headlamp illumination reached the overhead signs.


In stream traffic, the average luminances of the two background materials were practically the same, while the brightness of the conventional legend material was greater than that of the high intensity material.

The thirteen people visiting this site responded in a similar manner to those who visited site 1, with the exception that one-third of the individuals stated that they first observed the high intensity sign rather than the conventional sign.


Site 3

The signs at site 3 were erected over the gore area; therefore no measurements were recorded at 300 feet (91.44 m) due to the hazards created by the weaving traffic. The luminance readings at this site, as shown in Figure 12, were similar to those for the previous two sites, which had straight approaches. Under low beam conditions, the luminances of the conventional materials were statistically brighter while the high intensity materials were brighter and relatively equivalent under high beams and stream traffic conditions, respectively. An examination of the standard deviations revealed that the brightness of the high intensity sign was much more uniform than that of the conventional sign.

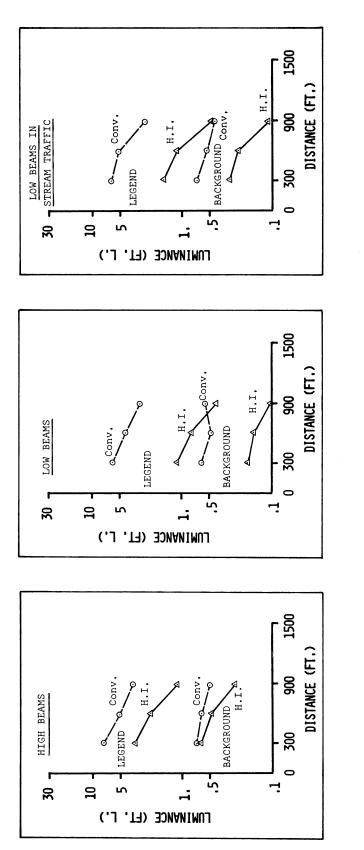
- 20 -

Nighttime average luminance versus distance. I ო Site Figure 12.

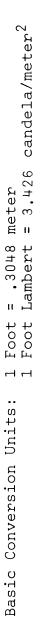
Six people viewed the signs and stated they first observed the conventional sign because of the bright spot at the bottom created by the external illumination. They further stated that they preferred the high intensity sign because it was more legible and uniform in brightness. They were of the opinion that the high intensity sign would adequately serve the motoring public.

Additional readings were taken of the conventional sign under non-illuminated conditions, which are occasionally viewed by the motorist during electrical malfunctions. At 600 feet (182.88 m) with high beam headlights, there were reductions of 40 and 50 percent in the brightness of the background and legend materials, respectively. For the motorist traveling alone using low beams, these reductions were 61 and 90 percent.

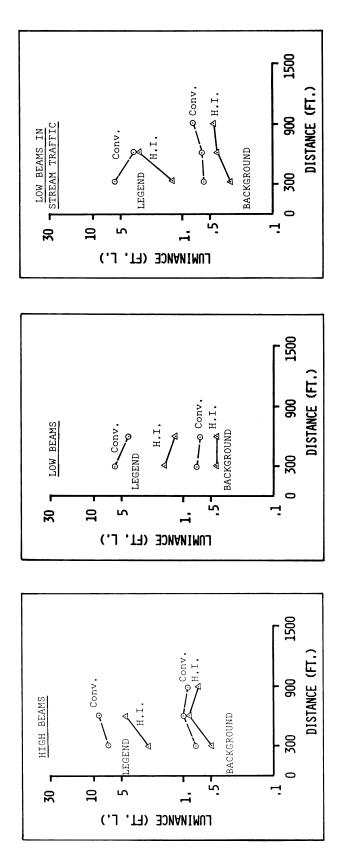
Readings were taken when the signs were covered with ice, and the brightness of the conventional sign, even under non-illuminated conditions, increased while the luminance of the high intensity sign was not affected.

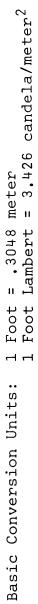

Site 4

The nighttime luminance data for site 4 are shown in Figure 13. The measurements were restricted to a maximum of 900 feet (274.32 m) because of a cut slope on the inside of the 3^o horizontal curve. Generally, the luminance readings for these signs were lower than those recorded at the previous three sites. The degree of illumination reaching the signs from the vehicle headlamps was limited because of the horizontal curve, and at all observation locations the brightness of the conventional sign was superior to that of the high intensity sign.


The thirteen people who viewed these signs stated unanimously that the lighted conventional sign provided better visibility and legibility.

Site 5


A review of Figure 14 indicates that the luminances of the signs at site 5 were similar to those measured at site 4. The luminances of both signs were generally low, with the conventional being brighter than the high intensity one. The six persons who viewed the signs agreed that the conventional sign provided the better service.

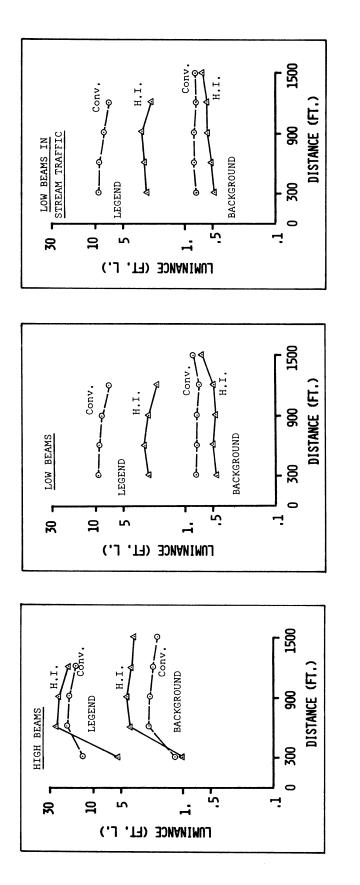


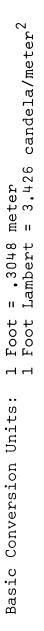
- 23 -

Nighttime average luminance versus distance. I t Site Figure 13.


Nighttime average luminance versus distance. ł ഹ Site Figure 14. Additional measurements were made of the conventional sign without exterior illumination to determine the effect of an electrical malfunction on the brightness of the sign. At 600 feet (182.88 m), with high beam headlamps, there were brightness reductions of 23 and 53 percent for the background and legend materials, respectively. On low beams the motorist would experience a reduction of 83 percent in the luminance of background material, while the brightness of legend decreased by 90 percent when the external lighting was absent on the conventional sign.

Site 6


The luminances of the overhead signs at site 6, the only location studied which had roadway lighting, are shown in Figures 15 and 16. Figure 15 shows the data recorded when the signs were approached on a curve and Figure 16 indicates the brightness of the sign when the vehicle traveled directly toward the signs on a straight approach.


On the curved approach, under high beam conditions, the luminances of the high intensity background and legend materials exceeded those of the conventional materials within the legibility and visibility distances. Although the luminance readings of the conventional materials were greater than those of the high intensity materials for low beam and stream traffic conditions, there were no statistical differences between the green background materials. On the straight approach (Figure 16) the special sign luminances within the legibility range were basically equivalent to those recorded on the curved approach; however, the brightness did increase at greater distances from the signs, which were within the visibility distance range.

Six people viewed the special signs erected for the study and each expressed difficulty in observing the signs at 1,500 feet (457.20 m); this fact emphasized the validity of the shorter computed visibility distances on illuminated roadways. For high beam and stream traffic conditions, the unanimous preference of these people was for the high intensity sign. The majority of the same individuals stated that they observed no difference in the brightness of the two signs for low beam headlamps.

Nighttime average luminance Site 6 - (Curved Approach) - versus distance. Figure 15.

Site 6 - (Straight Approach) - Nighttime average luminance versus distance. Figure 16.

1561

- 27 -

CONCLUSIONS

Previous studies of sign brightness have reported essentially laboratory findings of calculated luminance in the absence of reliable and sensitive instruments for field work. It has been only in recent times that satisfactory photometers have been developed to make in situ luminance measurements of signs. The objective of this study was to compare the field brightness of high intensity overhead signs without external illumination to that of the lighted conventional signs. The sign luminances measured and reported in this study should not be interpreted as luminescent standards. The NCHRP is funding a project which hopefully will establish these requirements. However, earlier investigators have suggested luminance levels for signs and several of the measurements taken on the evaluated signs were below these levels.⁽¹⁰⁾

The analysis revealed a resemblance in the luminances of signs erected on roadways with similar configurations. The conclusions based on the findings from signs erected on straight, curved and illuminated roadways are presented in the following sections.

Non-illuminated Straight Roadways

For signs erected on straight sections of roadway there were no statistical differences in the brightnesses of the background materials of the two signs for the motorists traveling in stream traffic. Although the average luminances of the high intensity legend materials were not as bright as those of the illuminated conventional sign, the people who viewed the signs stated that the uniform brightness of the high intensity sign provided greater legibility than the illuminated sign with the uneven light distribution. For a single vehicle traveling with high beam lights the high intensity signs were much brighter; however, for the same vehicle using low beams the luminance of the high intensity signs was not as bright as that of the adjacent conventional signs. It should be pointed out that as a matter of observation the people who conducted the study are of the opinion that there are only limited occasions when it is feasible for the "lone" motorist to utilize low beams on a freeway. In fact, it was not possible to collect the low beam data at any of the study sites until after 1 a.m., when traffic volumes were low.

The high intensity materials provided constant service whereas the brightness of conventional materials was governed by the external lighting. During electrical malfunctions the luminances of the conventional materials reduced drastically and the brightness was insufficient to provide the motorist proper service.

Non-illuminated Curved Roadway

On a curved approach, where only a limited amount of light from the vehicles was projected upon the overhead signs, the luminances of the unlighted high intensity materials were not sufficient to provide the motorists with the equivalent sign legibility and visibility obtained from the conventional signs.

Although the luminance readings of the unlighted high intensity sign were more uniform than those of the conventional sign, the persons who viewed the signs on the curved approaches unanimously concurred that the lighted sign provided better service.

While external lighting was required to provide high luminance measurements on the curved sections of roadway, the use of the brighter materials was also beneficial in view of the brightness reduction experienced during electrical malfunctions. Under nonilluminated conditions the high intensity signs were two to three times brighter than the conventional signs.

Illuminated Roadways

The presence of roadway lighting reduces the maximum visibility distance and thus increases the probability that the sign will not be seen even though the legibility distance may be adequate. Furthermore, the findings of this study indicated that roadway illumination did not significantly increase the luminances of overhead signs.

When approaching the signs on a straight course and using high beam headlights, it was concluded that the luminances of the high intensity materials exceeded those of the conventional materials within the legibility and visibility distances. For stream traffic conditions, the non-illuminated high intensity sign was preferred. For the same signs when approached on a slight curve (0.24° of curve) using high beams, the luminances of the high intensity signs were greater; however, at distances within the visibility range the luminance levels decreased at a greater rate than they did on the straight approach.

Under low beam conditions the conventional materials were brighter than the high intensity materials on the straight and curved approaches.

At 1,500 feet (457.20 m) the signs did have poor "attention value" characteristics but after the persons visiting the site moved to within the legibility distance range they concurred that the high intensity sign provided better service than the lighted conventional sign under high beam and stream traffic conditions.

RECOMMENDATIONS

The conclusions of this study indicate that the external lighting can be eliminated on many overhead signs through the use of high intensity sheeting without adversely affecting the service to the motoring public.

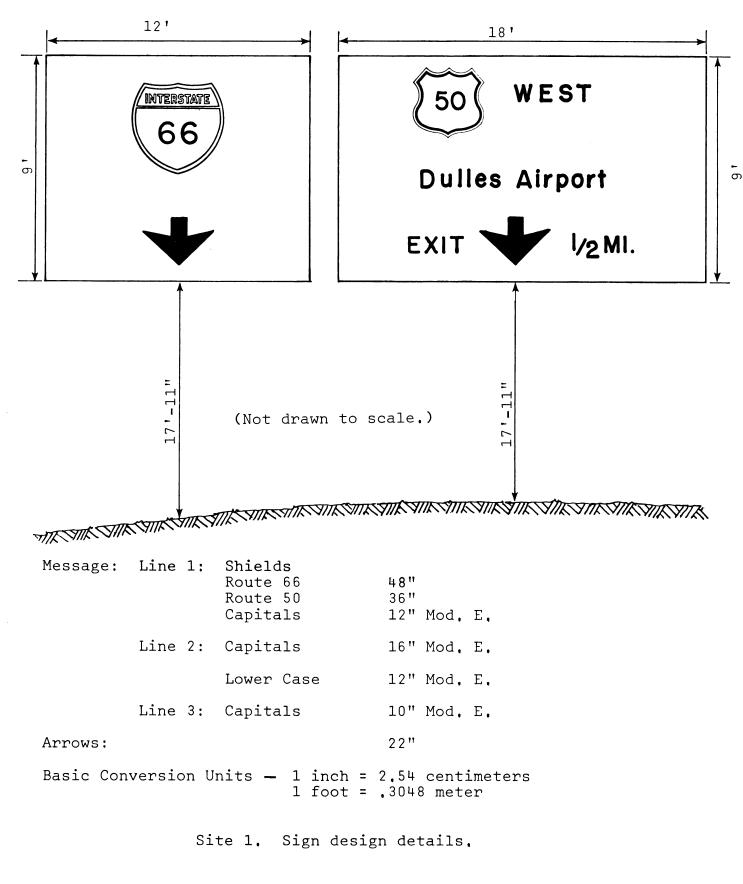
It is recommended that consideration be given to disconnecting or removing the illumination on existing and proposed high intensity overhead signs on roadways that are susceptible to high beam and stream traffic lighting conditions and which have a straight approach equal to or greater than the visibility recognition distance. Generally the maximum visibility distances in Virginia are approximately 1,000 and 1,200 feet (304.80 and 365.76 m) for illuminated and non-illuminated roadways, respectively. This recommendation should not be applied to signs on roadways where the "lone" motorist is required to use low beam headlights, such as narrow median facilities where state law requires the motorist to dim his headlights to prevent the projection of glare into the oncoming driver's eyes.

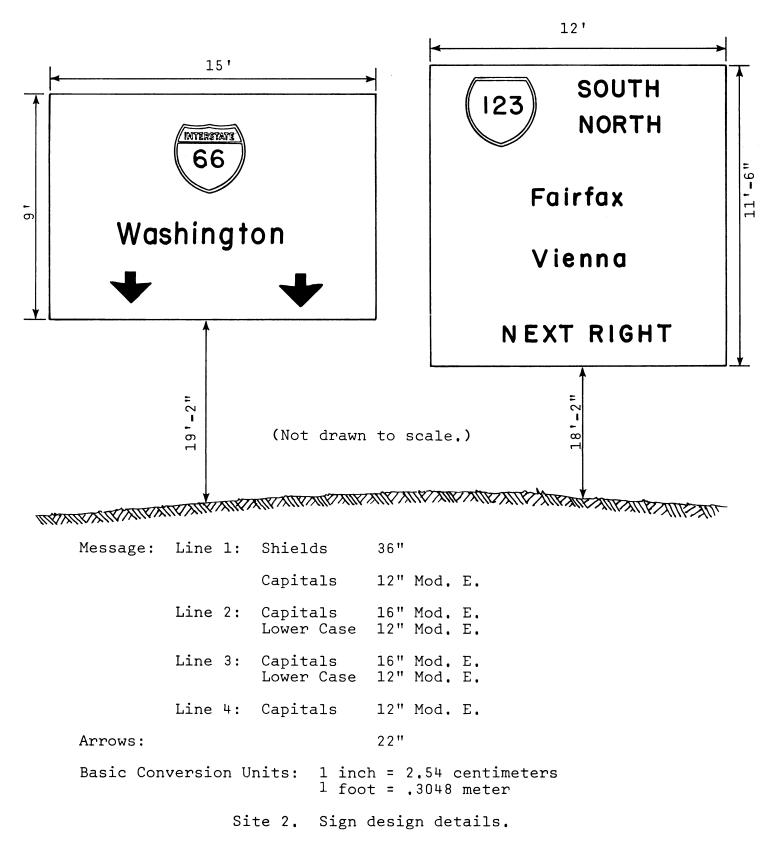
The Department should continue to provide external lighting on all overhead signs which are erected on curved sections of illuminated and non-illuminated roadways. Although lighting is required, the policy of using high intensity signs on the interstate and limited access systems should be maintained. The high intensity signs are beneficial at these restricted visibility locations, especially during electrical malfunctions.

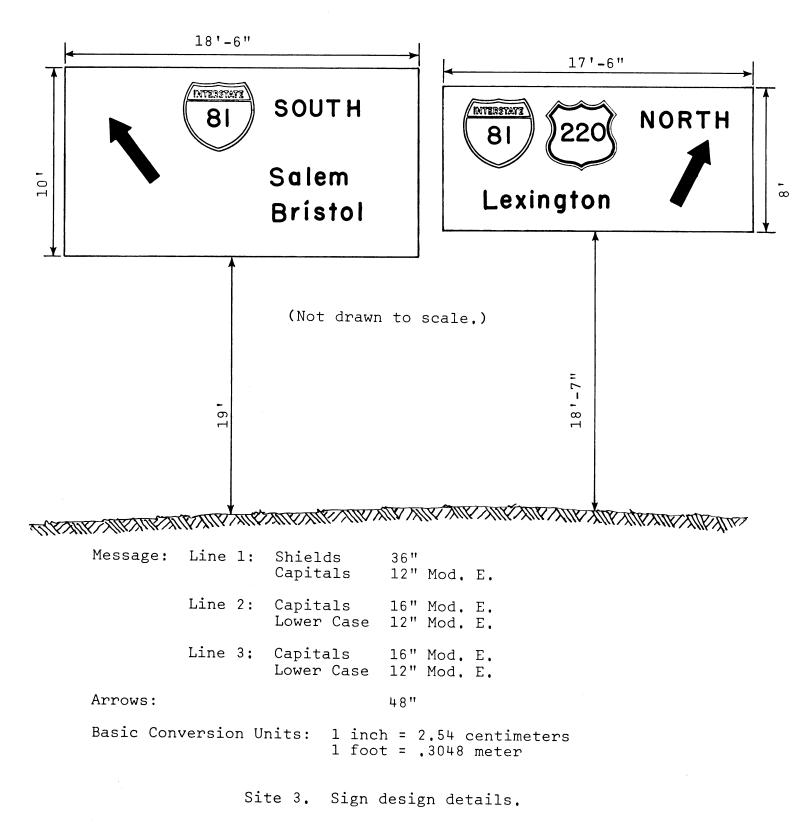
ACKNOWLEDGMENTS

The author acknowledges the contributions of a number of people from the Virginia Department of Highways and Transportation who contributed to this research. D. B. Hope and M. E. Wood, Jr., district engineers in the Culpeper and Salem Districts, respectively, authorized the refurbishment of the signs used in the study. L. C. Taylor II, J. W. Nicholson, and H. E. Carpenter coordinated and implemented the sign refurbishments, illumination modifications, and the handling of traffic during data collection. Sincere appreciation is extended to the members of the maintenance forces who assisted in the sign work and provided traffic control and safety. Without their assistance, completion of the project would have been impossible.

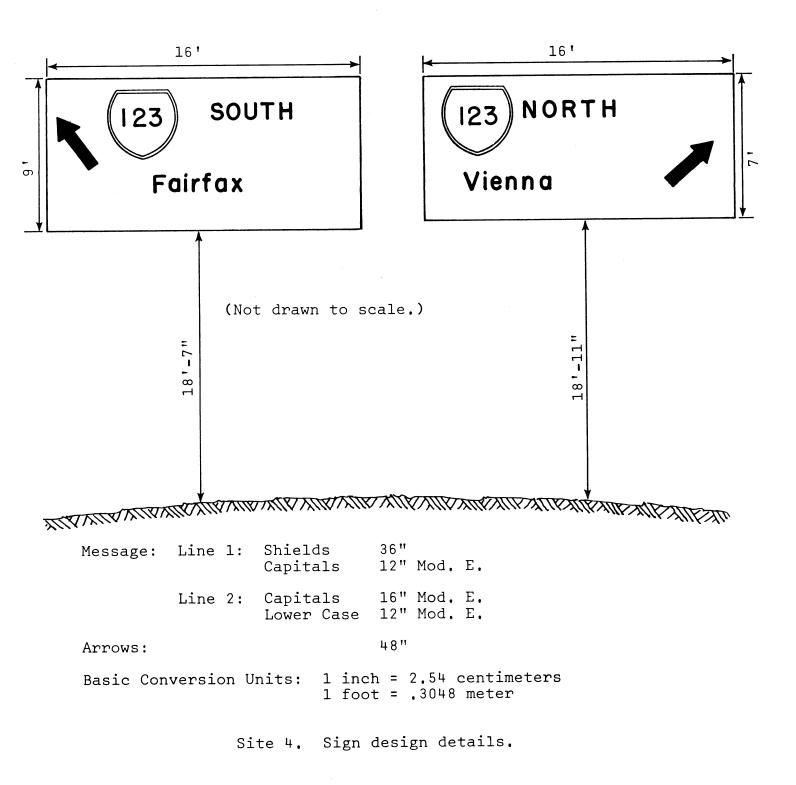
Much gratitude goes to John Shelor, traffic technician, for his help throughout the project, and especially his assistance on the long and tiring nights when the sign luminances were measured.

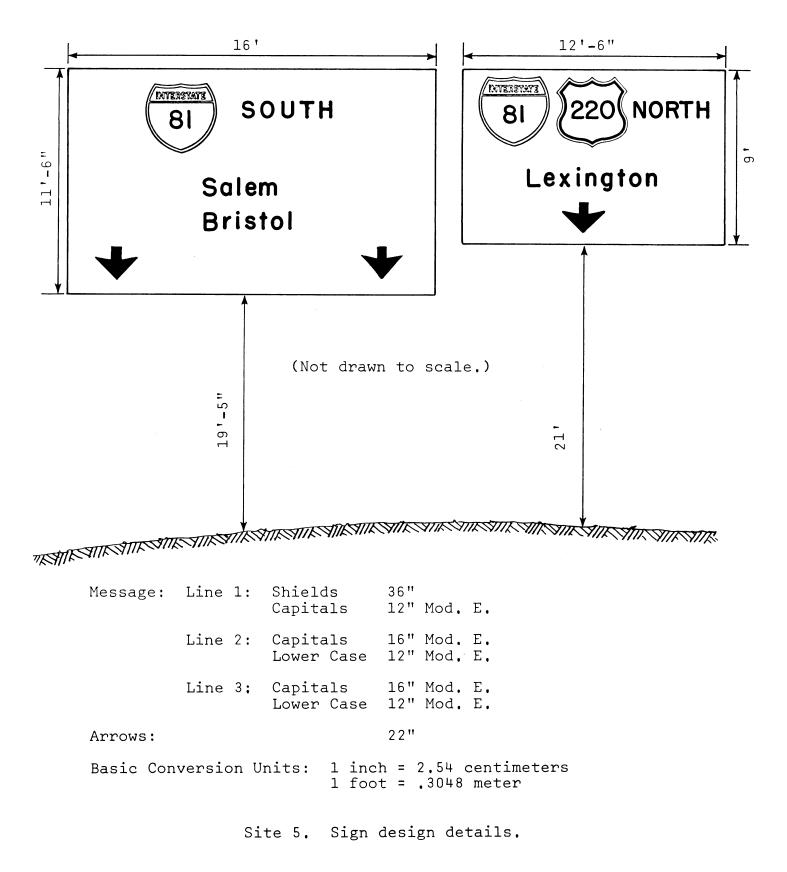

Finally, acknowledgment goes to Jim Benson, student helper, for his contribution in analyzing the data and to all the individuals who so freely offered information for this research.

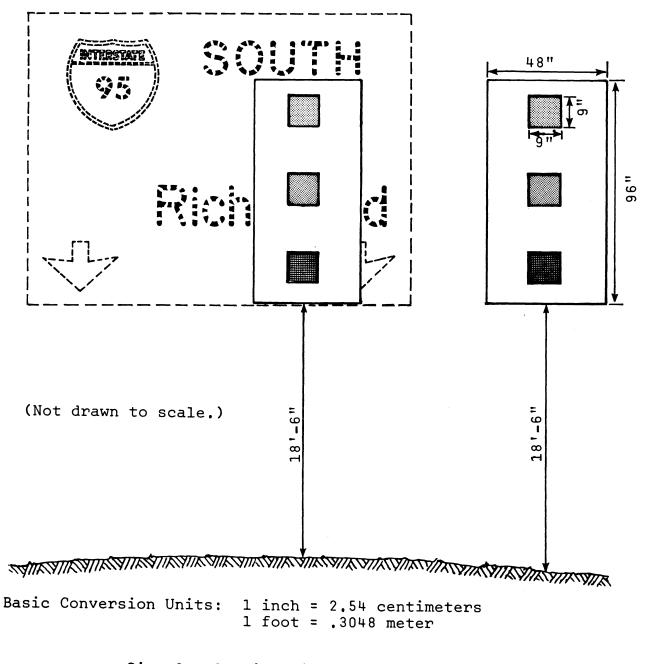

REFERENCES


- 1. <u>Manual on Uniform Traffic Control Devices</u>, Federal Highway Administration, U. S. Department of Transportation, 1971.
- "Evaluation of Reflective Sign Materials," Louisiana Department of Highways, Research and Development Section, January 1973.
- Rizenbergs, R. L., "High Intensity Reflective Materials for Signs," Kentucky Department of Highways, Research Report, May 1973.
- 4. Youngblood, W. P., and H. L. Woltman, "A Brightness Inventory of Contemporary Signing Materials for Guide Signs," <u>Highway</u> <u>Research Record No. 377</u>, Highway Research Board, Washington, D. C., 1971.
- 5. Robertson, R. N., "Use of High Intensity Reflective Materials in Highway Signing, A Literature Review," Virginia Highway Research Council, August 1973.
- Baerwald, John E. (ed.), <u>Traffic Engineering Handbook</u>, 3rd edition, Washington, D. C.: Institute of Traffic Engineers, 1965.
- 7. <u>Standard Alphabets for Highway Signs</u>, Bureau of Public Roads, U. S. Department of Commerce, 1966.
- Hilton, M. H., "Roadway Lighting Study, Route 264 in Downtown Norfolk," Virginia Highway Research Council, April 1974.
- 9. Forbes, T. W., "Factors in Highway Sign Visibility," <u>Traffic</u> <u>Engineering</u>, Vol. 39, No. 12, Washington, D. C., September 1969.
- 10. Elstad, J. O., J. T. Fitzpatrick, and H. L. Woltman, "Requisite Luminance Characteristics for Reflective Signs," <u>Highway Research Board Bulletin 336</u>, Highway Research Board, Washington, D. C., 1962.

APPENDICES







A-3

Site 6. Special sign design details.

Summary o	of	Luminance	Data	and	Statistical	Tests
-----------	----	-----------	------	-----	-------------	-------

Sign	Distance (ft.)	Luminance (ftlamberts)	Number of Readings	Standard Deviation	t Value	Significanc
		Sign Backgro	ound — High Be	ams		
High Intensity Conventional	300 300	.629 .845	35 35	.331 .442	-2.311	Yes
High Intensity Conventional	600 600	1.997 1.710	40 40	.507 .589	2.335	Yes
High Intensity Conventional	900 900	1.905 1.507	40 40	.562 .543	3.222	Yes
High Intensity Conventional	1,200 1,200	1.212 1.007	40 40	.435 .364	2.287	Yes
High Intensity Conventional	1,500 1,500	.605	30 30	.201	-1.704	No
		Sign Lege	nd — High Beam	S		,
High Intensity Conventional	300 300	3.690 14.479	19 30	1.868 9.239	-5.007	Yes
High Intensity Conventional	600 600	12.360 18.600	8 22	3.380 9.580	-1.780	No
High Intensity Conventional	900 900	9.377 16.080	8 18	5.050 7.314	-2.343	Yes
		Sign Backgr	ound — Low Bea	ms		
High Intensity Conventional	300 300	.182	25 25	.057	-7.177	Yes
High Intensity Conventional	600 600	.207	25 25	.083	-6.646	Yes
High Intensity Conventional	900 900	.131 .453	30 30	.043	-6.598	Yes
High Intensity Conventional	1,200 1,200	.092 .448	30 30	.034 .229	-8.429	Yes
High Intensity Conventional	1,500 1,500	.088 .395	20 20	.048 .189	-7.029	Yes
		Sign Lege	nd — Low Beams			
High Intensity Conventional	300 300	.970 13.920	11 20	.477 9.199	-4.630	Yes
High Intensity Conventional	600 600	.985 13.030	6 16	.499 9.811	-2.960	Yes
High Intensity Conventional	900 900	.537 11.170	6 14	.204 6.521	-3.932	Yes
	Si	gn Background L	ow Beams in Str	eam Traffic		
High Intensity Conventional	300 300	.286	20 20	0.07	-2.350	Yes
High Intensity Conventional	600 600	.465 .674	20 20	0.16	-1.113	No
High Intensity Conventional	900 900	.363 .687	20 20	.09 .32	-1.818	No
High Intensity Conventional	1,200 1,200	.292 .754	20 20	.09 .44	-2.491	Yes
High Intensity Conventional	1,500 1,500	.276.773	20 20	.13 .43	-2.643	Yes
		Sign Legend — Low	Beams in Strea	am Traffic		
High Intensity Conventional	300 300	1.91 9.31	4 12	.50 7.02	-1.477	No
High Intensity Conventional	600 600	1.82 9.11	4 8	.46 6.46	-1.447	No
High Intensity Conventional	900 900	1.01 5.79	4 8	.15 4.13	-1.496	No

Site	2
------	---

Sign	Distance (ft.)	Luminance (ftlamberts)	Number of Readings	Standard Deviation	t Value	Significance
		Sign Bac kgr ound	d — High Beam	s		
High Intensity Conventional	300 300	.898 1.144	35 35	.662 .860	-1.339	No
ligh Intensity Conventional	600 600	3.824 2.328	40 40	1.002 .967	6.794	Yes
High Intensity Conventional	900 900	3.386 2.119	35 35	.896 1.000	5.583	Yes
High Intensity Conventional	1,200 1,200	2.566 1.736	30 30	.771 .924	3.778	Yes
High Intensity Conventional	1,500 1,500	2.291 1.575	28 30	.910 .800	3.189	Yes
		Sign Legend ·	— High Beams	<u> </u>		
High Intensity Conventional	300 300	4.371 13.820	32 26	2.996 10.010	-5.076	Yes
High Intensity Conventional	600 600	18.560 18.380	26 18	5.368 12.350	.066	No
High Intensity Conventional	900 900	14.410 13.490	14 10	5.419 8.198	. 332	No
		Sign Backgroun	d — Low Beams			
High Intensity Conventional	300 300	.316 .697	35 35	.205 .467	-4.422	Yes
High Intensity Conventional	600 600	.448 .707	35 35	.236 .467	-2.926	Yes
High Intensity Conventional	900 900	.464 .736	35 35	.293.509	-2.740	Yes
High Intensity Conventional	1,200 1,200	.554 1.014	2 0 2 0	.379 .752	-2.444	Yes
High Intensity Conventional	1,500 1,500	.495 .807	33 35	.273	-2.522	Yes
		Sign Legend	- Low Beams			
High Intensity Conventional	300 300	1.344 10.490	29 21	.677 7.901	-6.227	Yes
High Intensity Conventional	600 600	2.098 9.576	25 13	1.084 8.794	-4.242	Yes
High Intensity Conventional	900 900	2.622 9.059	12 8	1.370 7.348	-2.997	Yes
	Sign	n Background — Low	Beams in Strea	m Traffic		
High Intensity Conventional	300 300	.672 .967	20 20	.641 .720	-1.368	No
High Intensity Conventional	600 600	.939 .869	25 25	.546 .549	.450	No
High Intensity Conventional	900 900	.930 .903	25 25	.498 ,531	.185	No
High Intensity Conventional	1,200 1,200	.871 .915	10 10	.270.733	179	No
High Intensity Conventional	1,500 1,500	.884 .916	23 25	.458 .748	176	No
	S	ign Legend — Low Be	ams in Stream	Traffic		
High Intensity Conventional	300 300	2.528 12.950	16 12	1.913 8.994	-4.528	Yes
High Intensity Conventional	600 600	3.305 11.500	19 11	1.169 9.336	-3.823	Yes
High Intensity Conventional	900 900	3.711 11.132	11 11	.783 7.411	-3.303	Yes

Sign	Distance	Luminance	Number of	Standard	t	Significance
	(ft.)	(ftlamberts)	Readings	Deviation	Value	
		Sign Backgroun	d — High Beams	;		
High Intensity Conventional	600 600	3.247 1.877	30 30	1.638 .692	4.220	Yes
High Intensity Conventional	900 900	3.223 1.733	2 5 2 5	1.041 .506	6.436	Yes
High Intensity Conventional	1,200 1,200	2.724 1.566	25 25	.342 .236	13.940	Yes
High Intensity Conventional	1,500 1,500	1.643 1.077	3 3	.172	2.772	Yes
		Sign Legend	— High Beams			
High Intensity Conventional	600 600	17.430 14.920	20 21	8.570 3.697	1.228	No
High Intensity Conventional	900 900	10.020 10.920	6 6	5.565 1.932	374	No
		Sign Backgroun	d - Low Beams			
High Intensity Conventional	600 600	.283 .410	30 30	.059 .173	- 3.810	Yes
High Intensity Conventional	900 900	.233 .374	25 25	.131 .178	- 3.208	Yes
High Intensity Conventional	1,200 1,200	.340 .473	2 0 2 0	.052 .127	- 4.338	Yes
High Intensity Conventional	1,500 1,500	.260 .390	3	.036 .165	- 1.333	No
		Sign Legend	- Low Beams			
High Intensity Conventional	600 600	.781 4.640	24 26	.203 1.984	- 9.476	Yes
High Intensity Conventional	900 900	.522 3.057	4 3	.234 .484	- 9.331	Yes
	Sign	Background — Low	Beams in Stream	n Traffic		
High Intensity Conventional	600 600	.471 .558	25 25	.174 .261	- 1.382	No
High Intensity Conventional	900 900	.659 .649	23 25	.336 .395	.093	No
High Intensity Conventional	1,200 1,200	.724 .547	25 25	.434 .241	1.781	No
High Intensity Conventional	1,500 1,500	.250 .792	3	.020 .219	- 4.269	Yes
	Si	gn Legend — Low Be	ams in Stream ?	Fraffic		
High Intensity Conventional	600 600	2.548 6.447	16 16	.996 2.252	- 6.333	Yes
High Intensity Conventional	900 900	3.045 5.437	4 3	.619 1.396	- 3.118	Yes

Site 3

Site 4

Summary of Luminance Data and Statistical Tests

Sign	Distance (ft.)	Luminance (ftlamberts)	Number of Readings	Standard Deviation	t Value	Significance
·····		Sign Backgroun	d — High Bear	ns		
High Intensity Conventional	300 300	.651 .713	40 40	.465 .435	612	No
High Intensity Conventional	600 600	.492 .625	40 40	.285 .361	- 1.840	No
High Intensity Conventional	900 900	.265 .495	25 17	.150	- 3.509	Yes
		Sign Legend	- High Beams			
High Intensity Conventional	300 300	3.423 8.105	28 26	1.948 4.671	- 4.870	Yes
High Intensity Conventional	600 600	2.311 5.276	26 26	1.386 3.023	- 4.546	Yes
High Intensity Conventional	900 900	1.143 3.762	11 11	.395 .887	- 8.947	Yes
		Sign Backgroun	nd — Low Beam	s		
High Intensity Conventional	300 300	.190 .621	40 40	.113 .391	- 6.698	Yes
High Intensity Conventional	600 600	.161 .491	40 40	.105 .313	- 6.321	Yes
High Intensity Conventional	900 900	.097 .552	25 17	.102	- 3.876	Yes
		Sign Legend	- Low Beams			
High Intensity Conventional	300 300	1.155 6.244	28 24	.746 3.213	- 8.142	Yes
High Intensity Conventional	600 600	.787 4.472	26 24	.466 2.284	- 8.055	Yes
High Intensity Conventional	900 900	.420 3.033	11 11	.146 .851	-10.041	Yes
	Sign	Background - Low	Beams in Stre	am Traffic		
High Intensity Conventional	300 300	.301 .711	30 30	.076 .391	- 5.634	Yes
High Intensity Conventional	600 600	.243 .547	30 30	.062 .341	- 4.803	Yes
High Intensity Conventional	900 900	.110 .447	25 17	.100	- 5.663	Yes
	Si	gn Legend — Low Be	eams in Stream	Traffic		
High Intensity Conventional	300 300	1.627 6.512	22 20	.555 3.364	- 6.719	Yes
High Intensity Conventional	600 600	1.162 5.442	20 22	.459 2.458	- 7.659	Yes
High Intensity Conventional	900 900	.453 2.665	11 11	.154 1.009	- 7.189	Yes

Site 5

Summary of Luminance I	Data and	Statistical	Tests	
------------------------	----------	-------------	-------	--

(ft.)	(ftlamberts)	Readings	Deviation	Value	•
		ound - High Bea			
				2 015	Yes
300	.094	25	.200	- 2.915	ies
600	.894	30	.212		
600	.971	30	.395	935	No
000	670	10			
				- 903	No
	.000		.+/0		NO
	Sign Leger	nd — High Beams	s	the state of the s	
300	2.374	24	.720		
300	6.619	21	4.124	- 4.965	Yes
600	1 117	2.2	811.0		
				- 5,304	Yes
	0.070	±∠		- 0:004	105
	Sign Backgro	ound — Low Bear	ms		
300	.443	10	.063		
300	.727	10	.315	- 2.796	Yes
		1.0			
				- 2 657	Yes
000				- 2.007	168
	Sign Leger	nd — Low Beams			
300	1.671	10	.415		
300	6.060	10	4.065	- 3.397	Yes
600	1.262	6	.064		
600	4.190	2	.014	-61.088	Yes
Si	en Background - Lo	ow Beams in Str	eam Traffic		
				_ 3 795	Yes
300	.003	25	. 34 3	- 3.795	165
600	.419	29	.210		
600	.609	29	.277	- 2.944	Yes
000	1170	10	201		
				- 1.532	No
				11002	
	Sign Legend — Low	Beams in Strea	m Traffic		
300	1.229	21	.478		
300	5.846	21	3.605	- 5.818	Yes
600	2 21 0	21	2 011		
				- 009	No
	500 900 900 300 600 600 600 600 600 600 600 500 500 5	300 .694 600 .894 600 .971 900 .678 900 .866 Sign Leger 300 2.374 300 6.619 600 4.417 600 4.417 600 4.417 600 4.413 300 .727 600 .433 600 .433 600 .433 600 .657 Sign Leger 300 300 1.671 300 1.671 300 .603 600 1.262 600 .305 300 .603 600 .419 600 .609 900 .472 900 .472 900 .472 900 .472 900 .5846 600 3.348	300 .694 25 600 .894 30 600 .971 30 900 .678 10 900 .866 10 Sign Legend - High Beam 300 2.374 24 300 2.374 24 300 6.619 21 600 4.417 22 600 8.073 12 Sign Background - Low Beam 300 .727 10 600 .433 10 600 .433 10 600 .657 10 Sign Legend - Low Beams 300 1.671 10 300 6.060 10 600 1.262 6 600 4.190 2 Sign Background - Low Beams in Strest 300 .603 300 .603 25 600 .419 29 900 .472 <	300 .694 25 .288 600 .971 30 .395 900 .678 10 .462 900 .866 10 .470 Sign Legend - High Beams .470 300 2.374 24 .720 300 2.374 24 .720 300 6.619 21 4.124 600 4.417 22 .849 600 8.073 12 3.059 Sign Background - Low Beams 300 .443 10 .063 300 .727 10 .315 600 .433 10 .059 600 .657 10 .260 Sign Legend - Low Beams 300 1.671 10 300 300	300 $.694$ 25 $.288$ -2.915 600 $.894$ 30 $.212$ 935 900 $.678$ 10 $.462$ 903 900 $.866$ 10 $.470$ 903 900 $.866$ 10 $.470$ 903 300 2.374 24 $.720$ 300 2.374 24 $.720$ 300 2.374 24 $.720$ 300 2.374 24 $.720$ 300 8.073 12 $.849$ 600 8.073 12 $.059$ -5.304 300 $.4433$ 10 $.063$ -2.657 300 $.4433$ 10 $.059$ -5.304 500 $.657$ 10 $.260$ -2.657 500 $.657$ 10 $.916$ -3.397 600 1.262 6 $.064$ -61.088 $51gn$ Background Low Beams in Str

Site 6 (Curved Approach)

Summary of Luminance Data and Statistical Tests

Sign	Distance (ft.)	Luminance (ftlamberts)	Number of Readings	Standard Deviation	t Value	Significance
the second s		Sign Backgro	und — High Bea	ams		
High Intensity Conventional	300 300	.854 1.046	6 6	.693 .636	500	No
ligh Intensity Conventional	600 600	3.812 2.704	6 6	2.086 1.565	1.041	No
ligh Intensity Conventional	900 900	3.517 1.972	6 6	2.082 1.060	1.620	No
ligh Intensity Conventional	1,200 1,200	2.851 1.578	6 6	2.068	1.396	No
High Intensity Conventional	1,500 1,500	2.648	6 6	1.658 .658	1.685	No
		Sign Legen	d — High Beam	5		
High Intensity Conventional	300 300	4.900 11.400	6 6	3.459 4.941	- 2.640	Yes
ligh Intensity Conventional	600 600	24.050 18.290	6 6	14.240 9.302	.830	No
ligh Intensity Conventional	900 900	20.530 14.860	6 6	12.700 6.351	.978	No
ligh Intensity Conventional	1,200 1,200	15.150 10.890	6 6	10.734 4.614	.893	No
		Sign Backgro	und — Low Bear	ns		
ligh Intensity Conventional	300 300	.424 .700	6 6	.331 .276	- 1.569	No
ligh Intensity Conventional	600 600	.515 .703	6 6	.249 .264	- 1.269	No
ligh Intensity Conventional	900 900	.388 .689	6 6	.168 .234	- 2.560	Yes
ligh Intensity Conventional	1,200 1,200	.337 .703	6 6	.107 .182	- 4.246	Yes
ligh Intensity Conventional	1,500 1,500	.459 .687	6 6	.063 .158	- 3.283	Yes
		Sign Legen	d — Low Beams			
igh Intensity onventional	300 300	2.309 9.343	6 6	1.570 3.539	- 4.450	Yes
igh Intensity onventional	600 600	2.770 8.090	6 6	1.692 2.226	- 4.66Ì	Yes
ligh Intensity Conventional	900 900	1.962 7.230	6 6	.672 2.110	- 5.827	Yes
igh Intensity onventional	1,200 1,200	1.399 6.137	6 6	.623 1.482	- 7.219	Yes
	Si	gn Background — Lo	w Beams in Stre	eam Traffic		
ligh Intensity Conventional	300 300	.489 .731	6 6	.296	- 1.426	No
ligh Intensity conventional	600 600	.645 .734	6 6	.295 .218	594	No
ligh Intensity Conventional	900 900	.513 .692	6 6	.171 .196	- 1.686	No
ligh Intensity Conventional	1,200 1,200	.435 .656	6 6	.107 .198	- 2.405	Yes
ligh Intensity Conventional	1,500 1,500	.492 .648	6 6	.064 .165	- 2.159	No
		Sign Legend - Low	Beams in Stream	m Traffic		
igh Intensity conventional	300 300	2.690 9.657	6 6	1.515 3.459	- 4.519	Yes
ligh Intensity Conventional	600 600	4.002 8.707	6 6	1.869 2.270	- 3.920	Yes
ligh Intensity Conventional	900 900	2.987 7.612	6 6	.947 2.087	- 4.943	Yes
	1,200	2.095	6	.187	-	

Site 6 (Straight Approach)

Summary of Luminance Data and Statistical Tests

Sign	Distance (ft.)	Luminance (ftlamberts)	Number of Readings	Standard Deviation	t Value	Significance
		Sign Backgrou	und — High Bea	ims		
High Intensity Conventional	300 300	1.010 1.215	6 6	.780 .778	456	No
ligh Intensity Conventional	600 600	3.815 2.366	6 6	1.772 1.360	1.589	No
High Intensity Conventional	900 900	4.122 2.294	6 6	2.496 1.532	1.529	No
High Intensity Conventional	1,200 1,200	3.738 2.183	6 6	2.570 1.407	1.300	No
High Intensity Conventional	1,500 1,500	3.434 1.884	6 6	2.545 1.268	1.335	No
		Sign Legend	d — High Beam	5		
High Intensity Conventional	300 300	5.123 12.580	6 6	3.485 5.691	-2.737	Yes
High Intensity Conventional	600 600	24.700 18.790	6 6	12.050 8.739	.973	No
High Intensity Conventional	900 900	23.230 17.790	6 6	15.040 9.078	.759	No
High Intensity Conventional	1,200 1,200	17.620 15.080	6 6	12.220 7.730	.430	No
		Sign Backgro	und - Low Bea	ms		
High Intensity Conventional	300 300	.451 .749	6 6	.373 .313	-1.499	No
High Intensity Conventional	600 600	.495 .724	6 6	.394 .277	-1.165	No
High Intensity Conventional	900 900	.464 .727	6 6	.347 .232	-1.543	No
High Intensity Conventional	1,200 1,200	.485 .687	6 6	.264 .246	-1.371	No
High Intensity Conventional	1,500 1,500	.661 .804	6 6	.341 .228	854	No
		Sign Legen	d - Low Beams	<u></u>		
High Intensity Conventional	300 300	2.451 8.797	6 6	1.669 2.731	-4.857	Yes
High Intensity Conventional	600 600	2.726 8.480	6 6	1.865 2.682	-4.315	Yes
High Intensity Conventional	900 900	2.465 7.893	6 6	1.553 2.193	-4.948	Yes
High Intensity Conventional	1,200 1,200	1.932 6.490	6 6	1.233 1.743	-5.229	Yes
	Si	gn Background — Lo	w Beams in Str	eam Traffic		
High Intensity Conventional	300 300	.481 .736	6 6	.375 .311	-1.282	No
High Intensity Conventional	600 600	.519 .761	6 6	.338	-1.406	No
High Intensity Conventional	900 900	.572 .776	6 6	.279	-1.372	No
High Intensity Conventional	1,200 1,200	.580 .742	6 6	.278	-1.110	No
High Intensity Conventional	1,500 1,500	.655 .734	6 6	.268 .224	554	No
		Sign Legend — Low	Beams in Strea	am Traffic		
High Intensity Conventional	300 300	2.618 8.685	6 6	1.772 2.293	-5.128	Yes
High Intensity Conventional	600 600	2.865 8.535	6 6	1.849 2.293	-4.715	Yes
High Intensity Conventional	900 900	3.007 7.498	6 6	1.310 2.123	-4.410	Yes
High Intensity	1,200	2.335	6 6	1.131 1.552	-5.412	Yes